75 research outputs found

    Electronic band structure of three-dimensional topological insulators with different stoichiometry composition

    Get PDF
    We report on a comparative theoretical and experimental investigation of the electronic band structure of a family of three-dimensional topological insulators, AIVBi4Te7−xSex (AIV= Sn, Pb;x = 0, 1). We prove by means of density functional theory calculations and angle-resolved photoemission spectroscopy measurements that partial or total substitution of heavy atoms by lighter isoelectronic ones affects the electronic properties of topological insulators. In particular, we show that the modification of the Dirac cone position relative to the Fermi level and the bulk band gap size can be controlled by varying the stoichiometry of the compound. We also demonstrate that the investigated systems are inert to oxygen exposure.The authors acknowledge financial support from the Saint Petersburg State University (Grant No. 40990069), the Tomsk State University competitiveness improvement program (Grant No. 8.1.01.2018), the Fundamental Research Program of the State Academies of Sciences (line of research III.23.2.9), and the project EUROFEL-ROADMAP ESFRI. This work was also partly supported by the Italian Ministry of Education, Universities and Research (MIUR) through project PON03PE_00092_1 (EOMAT) and by the Science Development Foundation under the President of the Republic of Azerbaijan (Grant No. EIF/MQM/Elm-Tehsil-1-2016- 1(26)-71/01/4-M-33). S.V.E. acknowledges support from the Russian Science Foundation (Grant No. 18-12-00169) for part of the electronic band structure calculations.Peer reviewe

    Mechanical properties of freely suspended atomically thin dielectric layers of mica

    Full text link
    We have studied the elastic deformation of freely suspended atomically thin sheets of muscovite mica, a widely used electrical insulator in its bulk form. Using an atomic force microscope, we carried out bending test experiments to determine the Young's modulus and the initial pre-tension of mica nanosheets with thicknesses ranging from 14 layers down to just one bilayer. We found that their Young's modulus is high (190 GPa), in agreement with the bulk value, which indicates that the exfoliation procedure employed to fabricate these nanolayers does not introduce a noticeable amount of defects. Additionally, ultrathin mica shows low pre-strain and can withstand reversible deformations up to tens of nanometers without breaking. The low pre-tension and high Young's modulus and breaking force found in these ultrathin mica layers demonstrates their prospective use as a complement for graphene in applications requiring flexible insulating materials or as reinforcement in nanocomposites.Comment: 9 pages, 5 figures, selected as cover of Nano Research, Volume 5, Number 8 (2012

    Graphite and Hexagonal Boron-Nitride Possess the Same Interlayer Distance. Why?

    Full text link
    Graphite and hexagonal boron nitride (h-BN) are two prominent members of the family of layered materials possessing a hexagonal lattice. While graphite has non-polar homo-nuclear C-C intra-layer bonds, h-BN presents highly polar B-N bonds resulting in different optimal stacking modes of the two materials in bulk form. Furthermore, the static polarizabilities of the constituent atoms considerably differ from each other suggesting large differences in the dispersive component of the interlayer bonding. Despite these major differences both materials present practically identical interlayer distances. To understand this finding, a comparative study of the nature of the interlayer bonding in both materials is presented. A full lattice sum of the interactions between the partially charged atomic centers in h-BN results in vanishingly small monopolar electrostatic contributions to the interlayer binding energy. Higher order electrostatic multipoles, exchange, and short-range correlation contributions are found to be very similar in both materials and to almost completely cancel out by the Pauli repulsions at physically relevant interlayer distances resulting in a marginal effective contribution to the interlayer binding. Further analysis of the dispersive energy term reveals that despite the large differences in the individual atomic polarizabilities the hetero-atomic B-N C6 coefficient is very similar to the homo-atomic C-C coefficient in the hexagonal bulk form resulting in very similar dispersive contribution to the interlayer binding. The overall binding energy curves of both materials are thus very similar predicting practically the same interlayer distance and very similar binding energies.Comment: 18 pages, 5 figures, 2 table

    Phonon-assisted carrier transport through a lattice-mismatched interface

    Get PDF
    We showed the distinctive unconventional junction effect of MoS2 junctions: a lattice mismatched MoS2. It is unique to observe the difference originated from the atomic interrelation at the interface. The results revealed the dominant scattering source at the conventional naturally stepwise junction, while the misorientationally stacked layer exhibited effectively decoupled behavior and a significantly smaller junction resistance via phonon assist carrier. Therefore, our finding in this paper clearly shows the different mechanisms in carrier transport at both junction interface of MoS2

    Electronic structure of one-dimensional copper oxide chains in LiCu2O2 from angle-resolved photoemission and optical spectroscopy

    No full text
    Angle-resolved photoemission (ARPES) and optical measurements were performed on single crystal samples of LiCu2O2, an antiferromagnetic S=1/2 spin-chain compound. The ARPES spectra show several dispersive branches associated with hybrid copper-oxygen states. The occurrence of the valence band maximum halfway between the center and the edge of the Brillouin zone, and the complex spectral line shapes are not reproduced by the existing calculations of the electronic structure. We suggest that they can be interpreted within a one-dimensional scenario of strongly correlated antiferromagnetic insulators. The combination of ARPES and optics allows us to estimate the magnitude of the charge-transfer gap (Delta=1.95 eV). Moreover, the temperature-dependent optical conductivity bears signatures of the three different magnetic phases of this material

    Photoemission and optical studies of ZrSe3, HfSe3, and ZrS3

    No full text
    Angle-resolved photoemission spectroscopy (ARPES) and optical measurements were performed on single crystal samples of ZrSe3, HfSe3, and ZrS3, which belong to the class of low-dimensional band insulators. By ARPES, we traced the dispersion of the (S 3p, Se 4p) p-derived valence states. In all cases, the topmost band exhibits energy splitting increasing from S to Se, which we attribute to the spin-orbit interaction, similar to recent observations in the related layered dichalcogenides. The combination of optical and photoemission results allows us to address the issue of the gap feature in the absorption spectra and to characterize the electronic and vibrational properties of ZrSe3, HfSe3, and ZrS3

    Photoemission as a probe of coexisting and conflicting periodicities in low-dimensional solids

    No full text
    When two different periodic potentials are present at the same time in a solid, the electron wavefunctions must conform to the resulting overall periodicity. It is the case of the broken-symmetry phases which are often observed in low-dimensional systems. The rearrangement of the electronic states has some interesting and perhaps unexpected consequences on the momentum distribution of the spectral weight, which can be measured in an ARPES experiment

    Structural investigation of InSe layered semiconductors

    No full text
    During the last decade, III-VI layered semiconductors (GaSe, InSe, GaS, etc.) have emerged as potential candidates for various applications, such as FET and optoelectronic devices. The properties of this class of layered materials are strongly dependent on their structure, and the existence of different polytypes makes it necessary the identification of the structural phase. In this work, we have performed a detailed investigation of the crystal structure and morphology of bulk InSe, by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy. The combination of the employed techniques allowed to identify the structural phase of InSe samples (epsilon polytype). Most importantly, we show that only by crossing the information of each technique it is possible to unambiguously discern between similar polytypes

    Electronic structure of an ordered Pb/Ag(111) surface alloy: Theory and experiment

    Full text link
    We have studied by angle-resolved photoelectron spectroscopy (ARPES) the band structure of the ordered surface alloy obtained by the deposition of 0.33 monolayers of Pb on the Ag(111) surface. We observe several dispersing features which are well described as Pb-Ag hybrid bands by a band structure calculation performed within the generalized gradient approximation of density functional theory. We also find that a band of mixed Pb p(z) and Ag s character is split in momentum space. We interpret this splitting as the combined result of spin-orbit interaction and broken inversion symmetry at the surface

    Narrowing of d bands of FeCo layers intercalated under graphene

    No full text
    We report on the electronic properties of an artificial system obtained by the intercalation of equiatomic FeCo layers under graphene grown on Ir(111). Upon intercalation, the FeCo film grows epitaxially on Ir(111), resulting in a lattice-mismatched system. By performing density functional theory calculations, we show that the intercalated FeCo layer leads to a pronounced corrugation of the graphene film. At the same time, the FeCo intercalated layers induce a clear transition from a nearly undisturbed to a strongly hybridized graphene π-band, as measured by angle-resolved photoemission spectroscopy. A comparison of experimental results with the computed band structure and the projected density of states unveils a spin-selective hybridization between the π band of graphene and FeCo-3d states. Our results demonstrate that the reduced dimensionality, as well as the hybridization within the FeCo layers, induces a narrowing and a clear splitting of Fe 3d-up and Fe 3d-down-spin bands of the confined FeCo layers with respect to bulk Fe and Co
    • 

    corecore